你的隐私,大数据怎知道?我们又该如何自我保护?******
在网络上,每个人都会或多或少,或主动或被动地泄露某些碎片信息。这些信息被大数据挖掘,就存在隐私泄露的风险,引发信息安全问题。面对汹涌而来的5G时代,大众对自己的隐私保护感到越来越迷茫,甚至有点不知所措。那么,你的隐私,大数据是怎么知道的呢?大家又该如何自我保护呢?
1.“已知、未知”大数据都知道
大数据时代,每个人都有可能成为安徒生童话中那个“穿新衣”的皇帝。在大数据面前,你说过什么话,它知道;你做过什么事,它知道;你有什么爱好,它知道;你生过什么病,它知道;你家住哪里,它知道;你的亲朋好友都有谁,它也知道……总之,你自己知道的,它几乎都知道,或者说它都能够知道,至少可以说,它迟早会知道!
甚至,连你自己都不知道的事情,大数据也可能知道。例如,它能够发现你的许多潜意识习惯:集体照相时你喜欢站哪里呀,跨门槛时喜欢先迈左脚还是右脚呀,你喜欢与什么样的人打交道呀,你的性格特点都有什么呀,哪位朋友与你的观点不相同呀……
再进一步说,今后将要发生的事情,大数据还是有可能知道。例如,根据你“饮食多、运动少”等信息,它就能够推测出,你可能会“三高”。当你与许多人都在独立地购买感冒药时,大数据就知道:流感即将暴发了!其实,大数据已经成功地预测了包括世界杯比赛结果、股票的波动、物价趋势、用户行为、交通情况等。
当然,这里的“你”并非仅仅指“你个人”,包括但不限于,你的家庭,你的单位,你的民族,甚至你的国家等。至于这些你知道的、不知道的或今后才知道的隐私信息,将会把你塑造成什么,是英雄还是狗熊?这却难以预知。
2.数据挖掘就像“垃圾处理”
什么是大数据?形象地说,所谓大数据,就是由许多千奇百怪的数据,杂乱无章地堆积在一起。例如,你在网上说的话、发的微信、收发的电子邮件等,都是大数据的组成部分。在不知道的情况下被采集的众多信息,例如被马路摄像头获取的视频、手机定位系统留下的路线图、驾车的导航信号等被动信息,也都是大数据的组成部分。还有,各种传感器设备自动采集的有关温度、湿度、速度等万物信息,仍然是大数据的组成部分。总之,每个人、每种通信和控制类设备,无论它是软件还是硬件,其实都是大数据之源。
大数据利用了一种名叫“大数据挖掘”的技术,采用诸如神经网络、遗传算法、决策树、粗糙集、覆盖正例排斥反例、统计分析、模糊集等方法挖掘信息。大数据挖掘的过程,可以分为数据收集、数据集成、数据规约、数据清理、数据变换、挖掘分析、模式评估、知识表示等八大步骤。
不过,这些听起来高大上的大数据产业,几乎等同于垃圾处理和废品回收。
这并不是在开玩笑。废品收购和垃圾收集,可算作“数据收集”;将废品和垃圾送往集中处理场所,可算作“数据集成”;将废品和垃圾初步分类,可算作“数据规约”;将废品和垃圾适当清洁和整理,可算作“数据清理”;将破沙发拆成木、铁、布等原料,可算作“数据变换”;认真分析如何将这些原料卖个好价钱,可算作“数据分析”;不断总结经验,选择并固定上下游卖家和买家,可算作“模式评估”;最后,把这些技巧整理成口诀,可算作“知识表示”。
再看原料结构。大数据具有异构特性,就像垃圾一样千奇百怪。如果非要在垃圾和大数据之间找出本质差别的话,那就在于垃圾是有实体的,再利用的次数有限;而大数据是虚拟的,可以反复处理,反复利用。例如,大数据专家能将数据(废品)中挖掘出的旅客出行规律交给航空公司,将某群体的消费习惯卖给百货商店等。总之,大数据专家完全可以“一菜多吃”,反复利用,而且时间越久,价值越大。换句话说,大数据是很值钱的“垃圾”。
3.大数据挖掘永远没有尽头
大数据挖掘,虽然能从正面创造价值,但是也有其负面影响,即存在泄露隐私的风险。隐私是如何被泄露的呢?这其实很简单,我们先来分解一下“人肉搜索”是如何侵犯隐私的吧!
一大群网友,出于某种目的,利用自己的一切资源渠道,尽可能多地收集当事人或物的所有信息;然后,将这些信息按照自己的目的提炼成新信息,反馈到网上与别人分享。这就完成了第一次“人肉迭代”。
接着,大家又在第一次人肉迭代的基础上,互相取经,再接再厉,交叉重复进行信息的收集、加工、整理等工作,于是,便诞生了第二次“人肉迭代”。如此循环往复,经过多次不懈迭代后,当事人或物的画像就跃然纸上了。如果构成“满意画像”的素材确实已经证实,至少主体是事实,“人肉搜索”就成功了。
几乎可以断定,只要参与“人肉搜索”的网友足够多,时间足够长,大家的毅力足够强,那么任何人都可能无处遁形。
其实,所谓的大数据挖掘,在某种意义上说,就是由机器自动完成的特殊“人肉搜索”而已。只不过,这种搜索的目的,不再限于抹黑或颂扬某人,而是有更加广泛的目的,例如,为商品销售者寻找最佳买家、为某类数据寻找规律、为某些事物之间寻找关联等。总之,只要目的明确,那么,大数据挖掘就会有用武之地。
如果将“人肉搜索”与大数据挖掘相比,网友被电脑所替代;网友们收集的信息,被数据库中的海量异构数据所替代;网友寻找各种人物关联的技巧,被相应的智能算法替代;网友们相互借鉴、彼此启发的做法,被各种同步运算所替代。
各次迭代过程仍然照例进行,只不过机器的迭代次数更多,速度更快,每次迭代其实就是机器的一次“学习”过程。网友们的最终“满意画像”,被暂时的挖掘结果所替代。之所以说是暂时,那是因为对大数据挖掘来说,永远没有尽头,结果会越来越精准,智慧程度会越来越高,用户只需根据自己的标准,随时选择满意的结果就行了。
当然,除了相似性外,“人肉搜索”与“大数据挖掘”肯定也有许多重大的区别。例如,机器不会累,它们收集的数据会更多、更快,数据的渠道来源会更广泛。总之,网友的“人肉搜索”,最终将输给机器的“大数据挖掘”。
4.隐私保护与数据挖掘“危”“机”并存
必须承认,就当前的现实情况来说,大数据隐私挖掘的“杀伤力”,已经远远超过了大数据隐私保护的能力;换句话说,在大数据挖掘面前,当前人类有点不知所措。这确实是一种意外。自互联网诞生以后,在过去几十年,人们都不遗余力地将碎片信息永远留在网上。其中的每个碎片虽然都完全无害,可谁也不曾意识到,至少没有刻意去关注,当众多无害碎片融合起来,竟然后患无穷!
不过,大家也没必要过于担心。在人类历史上,类似的被动局面已经出现过不止一次了。从以往的经验来看,隐私保护与数据挖掘之间总是像“走马灯”一样轮换的——人类通过对隐私的“挖掘”,获得空前好处,产生了更多需要保护的“隐私”,于是,不得不再回过头来,认真研究如何保护这些隐私。当隐私积累得越来越多时,“挖掘”它们就会变得越来越有利可图,于是,新一轮的“挖掘”又开始了。历史地来看,人类在自身隐私保护方面,整体处于优势地位,在网络大数据挖掘之前,“隐私泄露”并不是一个突出的问题。
但是,现在人类需要面对一个棘手的问题——对过去遗留在网上的海量碎片信息,如何进行隐私保护呢?单靠技术,显然不行,甚至还会越“保护”,就越“泄露隐私”。
因此,必须多管齐下。例如从法律上,禁止以“人肉搜索”为目的的大数据挖掘行为;从管理角度,发现恶意的大数据搜索行为,对其进行必要的监督和管控。另外,在必要的时候,还需要重塑“隐私”概念,毕竟“隐私”本身就是一个与时间、地点、民族、文化等有关的约定俗成的概念。
对于个人的网络行为而言,在大数据时代,应该如何保护隐私呢?或者说,至少不要把过多包含个人隐私的碎片信息遗留在网上呢?答案只有两个字:匿名!只要做好匿名工作,就能在一定程度上,保护好隐私了。也就是说,在大数据技术出现之前,隐私就是把“私”藏起来,个人身份可公开,而大数据时代,隐私保护则是把“私”公开(实际上是没法不公开),而把个人身份隐藏起来,即匿名。
(作者:杨义先、钮心忻,均为北京邮电大学教授)
发挥数据的创新引擎作用******
作者:孙辰朔(清华大学习近平新时代中国特色社会主义思想研究院特约研究员)
随着数字技术创新和迭代速度加快,数据作为关键生产要素,已快速融入生产、分配、流通、消费和社会服务管理等各个环节,成为驱动经济社会发展的重要力量。习近平总书记指出,“发挥数据的基础资源作用和创新引擎作用,加快形成以创新为主要引领和支撑的数字经济”。中共中央、国务院前不久发布的《关于构建数据基础制度更好发挥数据要素作用的意见》对激活数据要素潜能、做强做优做大数字经济、构筑国家竞争新优势作出了一系列部署。切实用好数据要素,更好发挥数据的数字化、网络化、智能化基础作用,协同推进技术、模式、业态和制度创新,对于深化创新驱动、推动高质量发展具有重要意义。
数据要素是数字经济深化发展的核心引擎。充分发挥数据资源优势、挖掘数据价值潜力,需要不断完善数据要素培育和发展相关体制机制,加快构建数据基础制度,让数据要素更好为创新赋能,为推动高质量发展注入强大动能。
第一,数据要素能够推动知识技术创新。数据要素是指能够参与社会生产经营活动、可为使用者或所有者带来经济效益、以电子方式记录的数据。释放数据要素价值的关键在于数据开发利用。政府、企业、科研院所等在参与数据要素加工使用的过程中,通过结合人工智能算法、经济数学模型和领域专业知识,对研发、设计、生产、营销与决策各环节进行数据清洗、分析、建模,可以发现新的规律,研究出新的理论,创造新的知识或技术,带来更多经济效益和更大社会价值。
第二,数据要素能够优化科技创新要素配置。实现科技创新的要素包括劳动、资本、土地、技术、数据、企业创新精神等实体要素和虚拟要素。传统要素市场中存在信息不对称、要素流通不畅等,容易产生创新要素供需错配等问题,使创新资源的利用偏离最优配置。通过对数据要素的挖掘分析和利用,可以降低信息交互偏差和要素交易成本,推动创新要素流向高生产效率、高边际产出的企业和行业,打通“信息孤岛”和“数据壁垒”,从而实现要素高效配置。
第三,数据要素能够提升产业创新发展能力。一方面,作为数字化、网络化、智能化的基础,数据要素能够参与技术、产品、市场、组织、管理等创新过程,依靠信息技术创新驱动,推动数字产业化,不断催生新产业新业态新模式,培育壮大一批具有增长潜力的新兴产业,创造更多新需求和新就业岗位,挖掘新的经济增长点。另一方面,促进数据高效流通,推动产业数字化转型,实现数字经济与实体经济深度融合,将极大提升传统产业跨区域、跨场景、跨行业的协同创新水平,提升产业发展的质量和效益。
更好发挥数据要素对创新的推动作用,可重点从以下四个方面发力。
一是构建彰显创新引领的数据基础制度,鼓励数据要素投入创新。数据基础制度体系是数据要素赋能创新的制度保障。要建立数据产权制度,推动数据产权结构性分置和有序流通,强化高质量数据要素供给,推进数据分类分级确权授权使用和市场化流通交易。要建立合规高效的数据要素流通和交易制度,让数据要素更加顺畅地流通、更有效率地交易。要建立体现效率、促进公平的数据要素收益分配制度,激发数据要素赋能创新、协同创新的活力和潜能。还要加强政策支持和引导,激励创新创业创造,让更多数据要素参与创新过程。
二是推动数字与产业融合发展,深化产业链创新链融合。数据要素驱动创新的重要路径在于促进数字经济与实体经济深入融合,促进实体经济中的创新要素高效配置。要面向各市场主体、行业和区域需求,统筹推进数字化转型。数据要素驱动创新的关键抓手在于推动创新链产业链深度融合,要加强数据要素与其他生产要素的组合迭代、交叉融合,推动生产要素多领域、多维度、系统性突破,围绕产业链部署创新链、围绕创新链布局产业链,深入实施工业互联网创新发展战略,发挥数据的创新引擎作用。
三是致力打造数字人才高地,强化关键核心技术攻关。充分发挥数据要素作用,关键在于扩大高水平数字创新人才供给。要创新科技人才培养体系,将数字人才培养作为学科建设的重要内容,提升全民数字素养与技能,培养造就一大批既懂专业领域又懂数字技术的高水平复合型人才。还要提升关键软硬件技术创新和供给能力,加强数字科技基础理论研究和数字基础设施建设。
四是构建多方协同治理模式,筑牢数字经济创新发展安全屏障。发挥数据要素驱动创新的作用离不开强有力的安全治理,要充分发挥政府有序引导和规范发展的作用,构建政府、企业、社会多方协同治理模式。要压实企业的数据治理责任,增强企业社会责任,促进公平竞争。还要增强数据安全保障、网络安全防护等各方面能力,把安全要求贯穿数据要素赋能创新全过程。